Optically‐Boosted Planar IBC Solar Cells with Electrically‐Harmless Photonic Nanocoatings

Author:

Santos Ivan M.1ORCID,Alexandre Miguel1ORCID,Mihailetchi Valentin D.2ORCID,Silva José A.3ORCID,Mateus Tiago1ORCID,Mouquinho Ana1ORCID,Boane Jenny1ORCID,Vicente António T.1ORCID,Nunes Daniela1ORCID,Menda Ugur D.1ORCID,Águas Hugo1ORCID,Fortunato Elvira1ORCID,Martins Rodrigo1ORCID,Mendes Manuel J.1ORCID

Affiliation:

1. CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa and CEMOP/UNINOVA 2829‐516 Caparica Portugal

2. International Solar Energy Research Center (ISC) Konstanz Rudolf‐Diesel‐Str. 15 D‐78467 Konstanz Germany

3. Faculdade de Ciências, Universidade Nova de Lisboa (FCUL) Instituto Dom Luiz 1749‐016 Lisboa Portugal

Abstract

AbstractAdvanced light management via front‐coated photonic nanostructures is a promising strategy to enhance photovoltaic (PV) efficiency through wave‐optical light‐trapping (LT) effects, avoiding the conventional texturing processes that induce the degradation of electrical performance due to increased carrier recombination. Titanium dioxide (TiO2) honeycomb arrays with different geometry are engineered through a highly‐scalable colloidal lithography method on flat crystalline silicon (c‐Si) wafers and tested on standard planar c‐Si interdigitated back‐contact solar cells (pIBCSCs). The photonic‐structured wafers achieve an optical photocurrent of 36.6 mA cm−2, mainly due to a broad anti‐reflection effect from the 693 nm thick nanostructured coatings. In contrast, the pIBCSC test devices reach 14% efficiency with 679 nm thick TiO2 nanostructures, corresponding to a ≈30% efficiency gain relative to uncoated pIBCSCs. In addition, several designed structures show unmatched angular acceptance enhancements in efficiency (up to 63% gain) and photocurrent density (up to 68% gain). The high‐performing (yet electrically harmless) LT scheme, here presented, entails an up‐and‐coming alternative to conventional texturing for c‐Si technological improvement that can be straightforwardly integrated into the established PV industry.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3