Linear and Nonlinear Optical Field Manipulations with Multifunctional Chiral Coding Metasurfaces

Author:

Jiang Yifan1,Liu Wenwei1,Li Zhancheng1,Choi Duk‐Yong2,Zhang Yuebian1,Cheng Hua1,Tian Jianguo1,Chen Shuqi13

Affiliation:

1. The Key Laboratory of Weak Light Nonlinear Photonics Ministry of Education Smart Sensing Interdisciplinary Science Center Renewable Energy Conversion and Storage Center School of Physics and TEDA Institute of Applied Physics Nankai University Tianjin 300071 China

2. Laser Physics Centre Research School of Physics and Engineering Australian National University Canberra ACT 2601 Australia

3. The Collaborative ‐Innovation Center of Extreme Optics Shanxi University Taiyuan Shanxi 030006 China

Abstract

AbstractOptical chirality, which describes the property of asymmetric light–matter interactions for different handedness of polarization, plays an important role in physical photonics, biochemical processes, and molecular recognition. Recently, asymmetric optical responses of chiral nanostructures provide a wide platform for arbitrary and artificial manipulation of optical chirality. Here, a design strategy is theoretically and experimentally introduced to realize a spin‐selective coding metasurface in both linear and third harmonic regimes with giant chirality. Significant chiral transmission and wavefront control are realized by a chiral coding metasurface composed of amorphous silicon (a‐Si) resonators with C2 symmetry. The resonators and the enantiomers are encoded with different transmission amplitude and phase. The information channels are expanded to six‐fold with simultaneous multi‐foci focusing and multi‐vortex generation operating in different polarization and linear/nonlinear channels. The nonlinear chiral high‐contrast imaging is also achieved for spin‐selective pattern information transmission. The study significantly expands the information capacity of coding metasurfaces, and can be readily applied in optical systems for information transmission in both linear and nonlinear regimes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Australian National Fabrication Facility

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3