Unveiling the Impact of Organic Spacer Cations on Auger Recombination in Layered Halide Perovskites

Author:

Furuhashi Tomoki1ORCID,Kanwat Anil2ORCID,Ramesh Sankaran13ORCID,Mathews Nripan24ORCID,Sum Tze Chien1ORCID

Affiliation:

1. Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore

2. Energy Research Institute @ NTU (ERI@N) Nanyang Technological University Research Techno Plaza, X‐Frontier Block, Level 5, 50 Nanyang Drive Singapore 637553 Singapore

3. Energy Research Institute @ NTU (ERI@N) Interdisciplinary Graduate Programme Nanyang Technological University 50 Nanyang Avenue, S2‐B3a‐01 Singapore 639798 Singapore

4. School of Material Sciences and Engineering Nanyang Technological University Singapore Block N4.1, 50 Nanyang Avenue Singapore 639798 Singapore

Abstract

AbstractA library of large organic cation spacers is available for engineering the performance of layered two‐dimensional (2D) halide perovskite devices. Despite extensive photophysics studies, there remains a research gap over the structure‐function relations in 2D perovskites, especially the underlying factors influencing the Auger recombination (AR) process. Herein, the contributions of exciton binding energy, exciton‐phonon coupling, and defects/film morphology to the AR process in 2D perovskites are examined. Phenyl‐alkyl‐ammonium cations with different lengths of attached alkyl groups, commonly used in blue light‐emitting diodes, are investigated. The findings reveal an order of magnitude higher threshold carrier density for the AR onset as well as a reduced AR in cations with longer alkyl chain length. Although possessing similar exciton binding energies, the exciton‐phonon coupling strength is found to play a major role in reducing the AR rate, with a smaller contribution from the defect states/film morphology. The findings can help provide further guidance on organic spacer cation engineering for highly efficient 2D perovskite light emitters.

Funder

National Research Foundation Singapore

Ministry of Education - Singapore

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3