Light‐Responsive Springs from Electropatterned Liquid Crystal Polymer Networks

Author:

Ryabchun Alexander1ORCID,Lancia Federico1ORCID,Katsonis Nathalie1ORCID

Affiliation:

1. Active Molecular Systems Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands

Abstract

AbstractFuture robotic systems will have to adapt their operation to dynamic environments and therefore their development will require the use of active soft components. Bioinspired approaches toward novel actuation materials for active components rely on integrating molecular machines in soft matter, and ensuring that their nanoscale movement is amplified to the macroscale, where mechanically relevant motion is generated. This approach is successfully used in the design of photoresponsive soft springs and other mechanically active materials. Here, this study reports on a new approach where the operation of photoswitches and chiral liquid crystals are combined with an original and mask‐free microscopic patterning method to generate helix‐based movement at the macroscale, including light‐driven winding and unwinding accompanied with inversion of handedness. The microscopic patterning is the result of the unique organization of cholesteric liquid crystals under weak electric field. At a higher level, the pitch and the handedness of the active springs are defined by the imprinted pattern and the angle at which the spring ribbons are cut in the material. These findings are likely to enable soft and responsive robotic systems, and they show how transmission of molecular operation into macroscale functional movement is enabled by materials design across multiple hierarchical levels.

Funder

European Research Council

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3