Affiliation:
1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
2. Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen Fujian 361021 China
Abstract
AbstractSynthesis of a Mn4+‐activated fluoride red‐emitting phosphor combining high efficiency, excellent thermal stability, and outstanding moisture resistance still remains a challenge. Herein, this work synthesizes a red‐emitting phosphor Cs2NbF6: Mn4+ (CNF: Mn4+) based on the cation‐exchange method. Interestingly, as a result of the redox reaction between Mn3+ (Mn2+) and Nb5+ ions during the exchange reaction, the real Mn4+ concentration is remarkably increased, while Nb5+ ions are reduced to Nb4+. The obtained optimum CNF: Mn4+ phosphor shows high internal and external photoluminescence (PL) quantum yield (QY) of 92% and 58%, respectively. Moreover, the CNF: Mn4+ exhibits excellent thermal stability (I@150 = 105%) and moisture resistance. A white light‐emitting diode (LED) packaged by combining blue diode chips, Y3Al5O12:Ce3+ yellow phosphor, and CNF: Mn4+ red phosphor demonstrates a low correlated color temperature (CCT) of 3872 K, high color rendering index (CRI) of Ra = 88, and a luminous efficacy of 105 lm W−1. The high‐performance of the white LED suggests the great potential of the CNF: Mn4+ narrowband red phosphor in display and lighting fields.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献