Affiliation:
1. School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
Abstract
AbstractMetal oxide semiconductors have been developed for ultraviolet–visible photodetectors, but improving sensitivity has remained a challenge due to poor mobility and carrier losses. In this study, a high‐performance photodetector is achieved by implementing a chargeable electret to regulate carrier transmission properties in the CuBi2O4 (CBO) conductive channel. As expected, the positively charged device shows improved performance, with a broadband detection range covering 250–600 nm, maximum responsivity and detectivity of around 10.65 A W−1 and 8.56 × 1012 Jones, and a fast rise and decay time of 50 and 300 µs, respectively. Mechanism analyses suggest two roles of the electret layer: 1) positive charges in the electret layer attract electrons and leave a pure hole conductive channel with less carrier recombination and trapping; 2) holes in the conductive channel move in one direction with less carrier collision and scattering. This work has demonstrated an effective strategy for providing a durable and stable ultra‐high electrostatic field to improve the sensitivity of photodetectors.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Lanzhou University
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献