Study of the Photoluminescence Enhancement Observed in ZnO Nanowire Gratings Optimally Grown by the Hydrothermal Method

Author:

Martin Aubry12,Potdevin Audrey2ORCID,Réveret François2,Centeno Emmanuel3,Smaali Rafik3,Omeis Fatima34,Riassetto David1,Kachan Elena4,Jourlin Yves4,Chadeyron Geneviève2,Langlet Michel1

Affiliation:

1. Université Grenoble Alpes CNRS Grenoble INP LMGP Grenoble 38000 France

2. Université Clermont Auvergne CNRS Clermont Auvergne INP ICCF Clermont–Ferrand F‐63000 France

3. Université Clermont Auvergne CNRS Clermont Auvergne INP Institut Pascal Clermont–Ferrand F‐63000 France

4. Laboratoire Hubert Curien Université Jean‐Monnet Université de Lyon IOGS, UMR CNRS 5516 Saint‐Etienne 42000 France

Abstract

AbstractAn original ZnO nanowire (NW) architecture has been developed, entirely based on a soft chemistry approach, and thoroughly assessed through optical measurements and electromagnetic simulations. This architecture relies on the photoimprinting of a sol–gel ZnO‐based photosensitive seed layer combined with the subsequent localized hydrothermal growth of ZnO NWs. The optimization of the elaboration protocol has been shown to lead to uniform and reproducible linear and periodic gratings of ZnO NWs with a width/pitch of 2/4 µm. The NW gratings are compared with full‐covered samples (NWs coating) elaborated from a nonimprinted seed layer. A morphological study reveals that NW gratings present a peculiar hedgehog‐like profile. Standard and angle‐resolved photoluminescence studies demonstrate that the ZnO NWs visible emission is strongly modified by the presence of NW gratings and that its red part is directionally extracted and enhanced by a factor of up to 2. The electromagnetic simulations performed for both samples highlight the role of the gratings acting as coupled microcavities that boost the ZnO emission through light localization and diffractive mechanisms. It enables the extraction of the resonant photons at specific angles and wavelengths.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3