Concerted Intramolecular and Intermolecular Charge Transfer for High‐Efficiency Near‐Infrared Thermally Activated Delayed Fluorescent Materials Approaching 900 nm

Author:

Xu Jingyi1ORCID,Dai Yu1,Zhang Jinyuan2,Jia Zhen1,Meng Qingyu1,Qiao Juan13ORCID

Affiliation:

1. Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry Tsinghua University Beijing 100084 China

2. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

3. Laboratory for Flexible Electronics Technology Tsinghua University Beijing 100084 China

Abstract

AbstractHindered by the energy gap law, the development of high‐efficiency near‐infrared (NIR) thermally activated delayed fluorescence (TADF) emitters with emission peaks over 800 nm remains challenging. The conventional strategy of enhancing intramolecular charge transfer for bathochromic shift commonly results in low radiative decay rates (kr) and emission efficiency. Herein, a superior strategy of concerted intramolecular CT (intra‐CT) and intermolecular CT (inter‐CT) for high‐efficiency NIR‐TADF materials is demonstrated. As a proof‐of‐concept, two novel emitters DTPZ and DtBuTPZ are developed based on a new acceptor phenazine‐2,3‐dicarbonitrile (PZ). High kr is achieved by large oscillator strength from appropriate intra‐CT property in monomers and effective electronic couplings between inter‐CT and intra‐CT states in aggregates. Suppressed nonradiative decay processes are realized through strong inter‐CT properties, abundant intermolecular attractive interactions, and negligible π∙∙∙π stacking. Consequently, organic light‐emitting diodes based on those emitters showed record‐high maximum external quantum efficiencies and radiances of 2.28%, 24.18 W Sr−1 m−2 at 817 nm, 0.57%, 14.38 W Sr−1 m−2 at 877 nm for DTPZ, and 2.34%, 23.55 W Sr−1 m−2 at 807 nm for DtBuTPZ, respectively.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3