Aging Effects on the Exciton Relaxation and Diffusion Processes in CsPbBr3 Nanocrystals

Author:

Cretí Arianna1,Lomascolo Mauro1,Zhang Yuhai2,De Giorgi Maria Luisa3,Mohammed Omar F.2,Anni Marco3ORCID

Affiliation:

1. CNR‐IMM Institute for Microelectronic and Microsystems Unit of Lecce Via per Monteroni Lecce 73100 Italy

2. Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955‐6900 Kingdom of Saudi Arabia

3. Dipartimento di Matematica e Fisica “Ennio De Giorgi” Università del Salento Via per Arnesano Lecce 73100 Italy

Abstract

AbstractFully inorganic perovskite nanocrystals (NCs) have been widely investigated due to their potential as very interesting active materials for several types of photonic and optoelectronic devices. Despite several experiments designed to investigate the basic emission properties of these NCs, a clear and complete understanding of their photophysics is still missing. In this work, temperature‐dependent steady state and time‐resolved photoluminescence (PL) measurements are used to investigate the nature of the emitting states, the origin of the excitation relaxation dynamics and the effects of aging upon long exposure to wet air for thin films of CsPbBr3 NCs prepared by coprecipitation. It is demonstrated that both free excitons and localized excitons contribute to the NC emission and that electron traps within the conduction band, ≈14 meV and ≈80 meV above the band edge, determine thermal emission quenching. Moreover, it is shown that the non‐exponential PL relaxation dynamics are due to short‐range energy migration within a disordered distribution of localized states between 10 and 100 K, with activation of a second, long‐range diffusion process at higher temperatures. It is also demonstrated that aging determines the variations in defect levels, exciton‐phonon coupling and exciton relaxation dynamics. The results substantially improve the current understanding of the basic photophysics of CsPbBr3 NC films and of the aging effects and are expected to provide a useful guide for future characterization of other similar materials.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3