Excitation of Chiral Cavity Plasmon Resonances in Film‐Coupled Chiral Au Nanoparticles

Author:

Wang Jing1,Zheng Jiapeng2,Li Kwai Hei3ORCID,Wang Jianfang2ORCID,Lin Hai‐Qing1,Shao Lei4ORCID

Affiliation:

1. Beijing Computational Science Research Center Beijing 100193 China

2. Department of Physics The Chinese University of Hong Kong Shatin Hong Kong SAR China

3. School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China

4. State Key Laboratory of Optoelectronic Materials and Technologies Guangdong Province Key Laboratory of Display Material and Technology School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China

Abstract

AbstractChiral plasmonic nanostructures have attracted increasing attention because of their superchiral near‐fields as well as strong far‐field chiral optical response. Recently, the development of chemical synthesis methods enabled the large‐scale manufacturing of three‐dimensional colloidal chiral plasmonic nanocrystals. Further improving the chiral optical response of such nanostructures will greatly facilitate their practical applications. In this work, it is found both in calculations and experiments that chiral cavity plasmon resonances can be excited in film‐coupled chiral Au helicoid nanoparticles, enabling the significant enhancement of the nanostructure chiral optical response. In addition, it is demonstrated from simulation that the chiral cavity mode can modulate the emission polarization of a point electric dipole placed in the nanocavity formed by the nanoparticle and the Au film, allowing the emission of almost circularly polarized photons by the linear dipole with the emission circular polarization anisotropy factor reaching as high as 93%. The film‐coupled chiral plasmonic nanoparticles therefore provide a promising platform for the construction of advanced chiral optical devices such as on‐chip nonreciprocal nanoscale light sources, chiral plasmonic sensors, chiral metamaterials, plasmonically enabled valleytronic devices, and nanophotonic circuits for future on‐chip communication applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3