Visible Transparent Wideband Microwave Meta‐Absorber with Designable Digital Infrared Camouflage

Author:

Cui Yina1ORCID,Wang Jun1ORCID,Sun Huiting1,Zhu Ying1,Zhu Ruichao1,Liu Tonghao1,Wang Xiaofeng1,Xu Cuilian1,Wang Jiafu1,Qu Shaobo1

Affiliation:

1. Shaanxi Key Laboratory of Artificially‐Structured Functional Materials and Devices Air Force Engineering University Xi'an Shaanxi 710051 China

Abstract

AbstractStealth performance plays an increasingly important role in the evaluation of aircraft performance, while achieving excellent stealth performance in multiple frequency bands simultaneously remains a crucial challenge. Herein, a visible transparent wideband microwave absorber with infrared camouflage function is theoretically presented and experimentally demonstrated. The sample is composed of two radar absorption layers (RALs) and an infrared shielding layer (IRSL). In addition, the magnetic resonance model and the ohmic loss model are employed to strengthen the absorption of the designed RALs >90% in a broadband frequency range of 7–23 GHz with a relative bandwidth of 106.7%, and an average visible transmittance of ≈60%. Furthermore, IRSL is achieved by a designable digital frequency selective surface (FSS), which promotes a compatible design between infrared camouflaged emissivity and microwave absorption. These peculiar properties not only verify the feasibility of the proposed strategy for achieving suitable artificially designed IR digital camouflage patterns to meet various thermal camouflage environments, but also have promising application prospects in multispectral stealth. The additional visible light transparent feature makes it useful in compatible camouflage‐stealth facilities when requiring observing and operating in optical windows.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3