Ultra Broad‐Band Excitable Organic–Inorganic Copper(I) Halides: Large‐Scale Synthesis, Outstanding Stability, and Highly Efficient White Light‐Emitting Diodes Application

Author:

Xie Lingling1,Liu Zheng1,Yang Henan1,Chen Kunlin1,Lv Ning1,Pi Huihui1,Chen Xiyao1,Li Xitao1,Liu Zhe1,Li Siyi1,Wang Zhenguang2,Wang Yongtian1,Chen Bingkun1ORCID

Affiliation:

1. Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics Beijing Institute of Technology Beijing 100081 P. R. China

2. State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Environmental Science Hebei University Baoding 071002 P. R. China

Abstract

AbstractOrganic–inorganic copper(I) halides (OICHs) have recently attracted great attentions for their unique optoelectronic properties. However, most of them have poor stability and narrow excitation in UV region, which seriously hinder their applications in efficient white light‐emitting diodes (WLEDs). Herein, 0D (C19H18P)2Cu4I6 with super broad‐band excitation (300–500 nm) and yellow emission with the absolute photoluminescence quantum yield of 87.4% is synthesized in a quantity of gram scale. Specifically, (C19H18P)2Cu4I6 possesses exceptional thermal‐, photo‐, air‐stability, and can maintain efficient emission even if soaked in water, ethyl acetate, and isopropanol over 30 days. WLEDs with remarkable color stability under various driven currents are fabricated using 450, 400, 365, and 310 nm LED chips. The ideal WLEDs based on single (C19H18P)2Cu4I6 by 450 nm LED chip presents high color rendering index of 86.7, and outstanding luminous efficiency of 90 lm W−1. To the best of the knowledge, this is the highest value that is achieved based on single‐component OICHs using blue light chip. This work not only promotes the prospect of OICHs in WLEDs but also significantly broadens their application in special lighting fields, such as underwater illumination.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3