Plasmonic Nanostructure Lattices for High‐Performance Sensing

Author:

Wen Xinyu123ORCID,Deng Shikai123ORCID

Affiliation:

1. State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

2. 2020 X‐Lab Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

3. School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractPlasmonic nanostructures show great promise for sensing because their nanoscale confined light fields are sensitive to the change in the surroundings. Conventional plasmonic sensors based on surface plasmon polaritons (SPPs) and localized surface plasmon resonances (LSPRs) have inspired considerable progress in sensing but still suffer from an oblique incidence or moderate sensitivity. This review focuses on how the rational design of novel plasmonic nanostructures can enable high‐performance sensing. Patterned nanostructures such as nanoparticle (NP) lattices to support surface lattice resonances (SLRs) and plasmonic nanogaps with nanogap modes are emerging to overcome the sensing limitations of SPP and LSPR. Moreover, hybrid nanostructures of plasmonic components with functional materials, such as metal‐organic frameworks, 2D materials, oxides, and polymers, show opportunities to further improve sensitivity and selectivity. In addition, plasmonic nanolasing and resonance modes from new materials exhibit appealing features for sensing. It is expected that further studies on plasmonic nanostructures with low‐loss materials, chirality characteristics, novel devices, and advanced fabrications will provide outlooks for high‐performance sensing.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3