Plasmonic Properties of SrVO3 Bulk and Nanostructures

Author:

Su Chia‐Ping1,Ruotsalainen Kari2,Nicolaou Alessandro2,Gatti Matteo234,Gloter Alexandre1ORCID

Affiliation:

1. Laboratoire de Physique des Solides CNRS Université Paris‐Saclay Orsay 91405 France

2. Synchrotron SOLEIL L'Orme des Merisiers Saint‐Aubin, Boîte Postale 48 Gif‐sur‐Yvette F‐91192 France

3. LSI CNRS CEA/DRF/IRAMIS École Polytechnique Institut Polytechnique de Paris Palaiseau F‐91120 France

4. European Theoretical Spectroscopy Facility (ETSF)

Abstract

AbstractCorrelated metals, such as SrVO3 (SVO) or SrNbO3, are promising materials for optical devices such as transparent conductors. Here, a real‐space and reciprocal‐space electron‐energy‐loss‐spectroscopy (EELS) investigation of SVO bulk and nanostructures is reported. An intense 1.35 eV excitation with a weak energy dispersion is observed in the loss function and is attributed to a bulk plasmonic excitation from the 3d‐t2g orbitals. Ab initio calculations done within a time‐dependent density functional theory framework reveal that a 1.5 band renormalization is sufficient to reproduce quantitatively this d–d plasmon energy and dispersion. The corresponding localized surface plasmon (LSP) peaks are measured by EELS on various nanostructures and are compared to finite‐difference time‐domain simulations. These LSPs exhibit quality factors above canonical materials (e.g., indium tin oxide) in the near‐infrared regime, demonstrating that SVO is also a material of high interest for plasmonic applications. Finally, by phasing out the surface plasmon contribution with EELS collected at minute off‐dipolar conditions, the bulk‐type plasmonic values are retrieved with nanometrical resolution. Core–shelled electronic structures are then observed for nanorods designed by focused ion beam (FIB), revealing a bandgap opening due to FIB damage. It is envisioned that similar bulk measurement can be feasible for most of the transition metal oxide nanostructures.

Funder

Grand Équipement National De Calcul Intensif

Agence Nationale de la Recherche

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3