Strategic Management of High‐Lying Triplet Excitons to Realize the Breakthrough in Efficiency of Blue Fluorescence OLEDs Based on AIE Emitter

Author:

Lin Chengwei1ORCID,Han Pengbo1,Qu Fenlan1,Xiao Shu1,Qiao Xianfeng1,Yang Dezhi1,Dai Yanfeng1,Sun Qian1,Qin Anjun1,Tang Ben Zhong12,Ma Dongge1

Affiliation:

1. Center for Aggregation‐Induced Emission Institute of Polymer Optoelectronic Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Guangdong‐Hong Kong‐Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China

2. Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong 2001 Longxiang Boulevard, Shenzhen, Longgang District Shenzhen City Guangdong 518172 China

Abstract

AbstractAggregation‐induced emission (AIE) materials are attractive for the fabrication of high‐efficiency organic light‐emitting diodes (OLEDs) owing to the “hot exciton” process by reverse intersystem crossing (hRISC) and high photoluminescence quantum yields (PLQY). However, the internal conversion (IC) from the high‐lying triplet excitation states (Tn, n≥2) to the lower excited triplet state (Tn‐1) is inevitable, resulting in severe exciton losses. Herein, an effective device structure is designed that reuses the lost triplet excitons caused by IC and realizes the breakthrough in the efficiency of blue fluorescence OLEDs based on AIE molecule as an emitter. The maximum external quantum efficiency reached as high as 14.8% and is kept at 14.4% at the luminance of 1000 cd m−2. In the designed device, a triplet–triplet annihilation (TTA) up‐conversion material 1‐[2,5‐dimethyl‐4‐(1‐pyrenyl)phenyl]pyrene (DMPPP) is introduced into the AIE emitter as a triplet sensitizer to receive the lost triplet excitons, and a thin TTA up‐conversion layer 9‐[4‐(10‐phenyl‐9‐anthryl)phenyl]‐9H‐carbazole (CzPA) is introduced in the middle of the doped layer to form the emissive layer (EML). It is found that the hRISC process of iTPB‐2AC greatly enhances the utilization efficiency of TTA intermediate state ([TT]*) excitons on CzPA to iTPB‐2AC so that the utilization of the lost excitons is maximized. This work establishes physical insights into the AIE emission materials and device fabrication of high‐efficiency blue fluorescence OLEDs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3