Silicon‐On‐Silicon Carbide Platform for Integrated Photonics

Author:

DeVault Clayton T.1234ORCID,Deckoff‐Jones Skylar5,Liu Yuzi6,Hammock Ian N.1,Sullivan Sean E.5,Dibos Alan24,Sorce Peter7,Orcutt Jason7,Awschalom David D.1234,Heremans F. Joseph1234,Falk Abram7,High Alexander A.1234

Affiliation:

1. Pritzker School of Molecular Engineering University of Chicago Chicago IL 60637 USA

2. Center for Molecular Engineering Argonne National Laboratory Lemont IL 60439 USA

3. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA

4. Q‐NEXT Argonne National Laboratory Lemont IL 60439 USA

5. memQ, Inc. Chicago IL 60615 USA

6. Center for Nanoscale Materials Argonne National Laboratory Lemont IL 60439 USA

7. IBM Quantum, IBM T.J.Watson Research Center 1101 Kitchawan Road, Yorktown Heights Yorktown NY 10598 USA

Abstract

AbstractSilicon carbide (SiC)'s nonlinear optical properties and applications to quantum information have recently brought attention to its potential as an integrated photonics platform. However, despite its many excellent material properties, such as large thermal conductivity, wide transparency window, and strong optical nonlinearities, it is generally a difficult material for microfabrication. Here, it is shown that directly bonded silicon‐on‐silicon carbide can be a high‐performing hybrid photonics platform that does not require the need to form SiC membranes or directly pattern in SiC. The optimized bonding method yields defect‐free, uniform films with minimal oxide at the silicon–silicon–carbide interface. Ring resonators are patterned into the silicon layer with standard, complimentary metal–oxide–semiconductor (CMOS) compatible (Si) fabrication and measure room‐temperature, near‐infrared quality factors exceeding 105. The corresponding propagation loss is 5.7 dB cm−1. The process offers a wafer‐scalable pathway to the integration of SiC photonics into CMOS devices.

Funder

National Science Foundation

U.S. Department of Energy

Office of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3