GaN as a Material Platform for Single‐Photon Emitters: Insights from Ab Initio Study

Author:

Yuan Junxiao1,Hou Yidong1,Yang Zenghui23,Chen Feiliang4ORCID,Li Qian23

Affiliation:

1. Department of Physics Sichuan University Sichuan 610065 P. R. China

2. Institute of Electronic Engineering China Academy of Engineering Physics 64 Mianshan Road, Youxian Mianyang 621999 P. R. China

3. Microsystem and Terahertz Research Center China Academy of Engineering Physics Chengdu 610299 P. R. China

4. School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China

Abstract

AbstractGaN with atom defects is a rising material platform for single‐photon emitter (SPE) recently due to their room‐temperature working conditions, high emission rate, narrow emission line‐width and mature processing technology. However, the SPE mechanism still remains unclear to date, which greatly hinders the progress of GaN based SPE. Herein, systematic ab initio calculations predict and identify two kinds of intrinsic point defects NGa and NGaVN in GaN, which can be response for the widely observed SPEs. The formation energy, band structure, transition mechanism, and orbital composition are systematically investigated. The results indicate that NGaVN° possesses a large zero‐phonon line (ZPL) of 1.98 eV and a short lifetime of 3.56 ns, which may be one of the most possible origins of SPEs in visible wavelengths. The calculation results coincide well with our measured ZPL (1.92 eV) and lifetime (1.14 ns), as well as the experimental results reported previously. This work also predicts that NGa0 and NGaVN+1 can produce SPEs at fiber telecommunications band (0.84 and 0.94 eV, respectively). These results give deep insights into the SPE emission mechanism in GaN and bridge the gap between the realized SPEs and the underlying physical mechanism.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3