Electrically Triggered Color‐Changing Materials: Mechanisms, Performances, and Applications

Author:

Jia Ruiming1,Xiang Shuhong1,Wang Yuechuan12,Chen Hong1,Xiao Ming12ORCID

Affiliation:

1. College of Polymer Science and Engineering Sichuan University Chengdu 610065 China

2. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

Abstract

AbstractElectrically triggered color‐changing materials, termed as electrochromic materials, offer precise and programmable color transistions through the manipulation of electric field frequency and amplitude. They are used as displays, sensors, military camouflage, wearable devices, and anticounterfeiting materials. Their future advancements depend on clear understanding of the color change mechanisms and pros/cons between different electrochromic materials. To this end, we starts by categorizing electrochromism into two classes according to color production mechanism: chemical color‐based and physical color‐based. Within the former, color emerges from chemical molecules selectively absorbing specific wavelengths of light and color changes stem from electrochemical redox reactions. The latter, meanwhile, hinges upon electrically induced alterations in the geometries, dimensions, or arrangements of nano/micro structures, such as photonic crystals and plasmonic nanostructures. The principles of color changes in both categories are detailed, and compare their differences in terms of response time, operating voltage, degree of color change, and stability. At the end, their applications will be discussed spanning from smart windows to color display, dynamic camouflage, energy storage, and thermal management. This critical review is aimed to provide multidisciplinary insights that will benefit both novices and seasoned experts engaged in fundamental exploration or practical investigations of electrochromic materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3