High‐Performance Green Quasi‐2D Perovskite Light‐Emitting Diodes via Passivated Defects

Author:

Yang Wei12,Ban Xin‐Xin3,He Xiao‐Li2,Huang Xin‐Mei2,Wang Xiao‐Yu2,Zhang Yong2,Gao Chun‐Hong12ORCID

Affiliation:

1. School of Physics and Materials Science Guangzhou University Guangzhou 510006 China

2. School of Physical Science and Technology MOE key laboratory on Luminescence and Real‐Time Analysis Southwest University Chongqing 400715 China

3. School of Environmental and Chemical Engineering Jiangsu Key Laboratory of Function Control Technology for Advanced Materials Jiangsu Ocean University Lianyungang Jiangsu 222005 China

Abstract

AbstractIn next generation semiconductors, metal halide perovskite materials would replace traditional light‐emitting materials since their exceptional photoelectronic characteristics. The future development of perovskite light‐emitting diodes have generated challenges such as abundant surface or interfacial defects and exciton quenching. To overcome these challenges, the light‐emitting layer is modified utilizing benzimidazole/phosphine oxide hybrid 1,3,5‐tris(1‐(4‐(diphenylphenylphosphoryl)phenyl)‐1H‐benzo[d]imidazol‐2‐yl)benzene (TPOB) and 1,3,5‐tris(diphenylphosphoryl)benzene (TPO) with high triple energy state. It is demonstrated by X‐ray photoelectron spectroscopy results that the oxygen atoms in the P = O functional group of TPOB and TPO provided lone electron pairs coordinate to the unsaturated Pb2+ in turn led to a decrease in the electron cloud density of Pb2+ and Br‐, which can suppress defects. Additionally, this technique improved the morphology of film, reduced surface roughness, and facilitated carrier transport, all of which are crucial for achieving high‐emission efficiency. As a result, the optimal devices has EQEs of 16.20 (TPOB) and 20.48% (TPO), respectively. Furthermore, the devices demonstrated excellent reproducibility. Excitingly, the champion EQE value for the optimal device is 22.64%. Simultaneously, it can increase the stability of the devices and the lifetimes are increased from 1231 s (Pristine) to 5421 (TPOB) and 5631 s (TPO).

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3