Dynamic Dipole Moment of Luminescent Liquid Crystals Enabled Highly Efficient Active Waveguide Materials Design and Synthesis

Author:

Chen Jin‐Kang1,Cao Yu2,Joy Akhila3,Li Jie1,Hao Tian‐Tian1,Huang Jiang1,Li Xiao3ORCID,Liu Feng2,Xie He‐Lou1ORCID

Affiliation:

1. Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges Universities of Hunan Province and College of Chemistry Xiangtan University Xiangtan 411105 China

2. Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

3. Department of Materials Science and Engineering University of North Texas Denton TX 76207 USA

Abstract

AbstractOrganic optical waveguide materials have attracted considerable attention for their promising applications in photonic and optoelectronic devices. However, for most materials, excellent light‐loss properties at high temperature cannot be obtained due to many factors. Consequently, realizing efficient optical waveguide materials that perform well at elevated temperatures remains a significant challenge. In this study, relying on the luminescent properties and self‐assembly properties of luminescent liquid crystals (LLCs), successfully fabricated materials are present for highly efficient active optical waveguides. A systematically synthesized set of LLCs with different structures is named according to the substituent type and the position of the cyano group, namely α‐DECN, α‐DEEOCN, β‐DECN, and β‐DEEOCN. Notably, α‐DECN and β‐DECN reveal hexagonal columnar phase, while α‐DEEOCN and β‐DEEOCN exhibit smectic phase. Optical waveguide experiments have revealed that the obtained LLCs showed highly efficient optical waveguide behavior, where the lowest light loss reached 0.15 dB mm−1 at room temperature. Remarkably, these LLCs show even lower light loss at high temperatures, with the light loss reaching 0.11 dB mm−1 as the lowest point. Further experimental results indicate that this phenomenon is attributed to the change in the dipole moment of these molecules. This research forms a significant groundwork for advanced exploration in optical waveguide material.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hunan Province of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3