Affiliation:
1. Key Laboratory for Organic Electronics and Information Displays Nanjing University of Posts & Telecommunications Institute of Advanced Materials (IAM) 9 Wenyuan Road Nanjing 210023 China
2. School of Chemical Science and Engineering Tongji University Shanghai 200092 China
Abstract
AbstractDoping has been proven to be a good way to regulate the optical and electrical properties of the active elements including both inorganic and organic materials. In this paper, the study demonstrates a bipolar doping strategy for an intrinsic charge‐transfer binary‐complex through the use of p‐ and n‐type dopants, which incorporate toward highly‐ordered ternary complexes. Benefitting from the good lattice matching and energy level tuning, the supramolecular system with a large doping concentration range (0 ≤ x ≤ 50% or 40%) assembles into the original crystal lattice and exhibits tunable luminescence or quenching phenomena even at very low ratio. The 7h‐benzo[c]carbazole (BCZ) dopped cocrystals show yellow–green to red emission due to the Förster resonance energy transfer (FRET); while only 5% 7,7,8,8‐tetracyanoquinodimethane (TCNQ) dopant can bring superior photothermal (PT) behavior with a high PT conversion efficiency up to 75.3%, owing to the efficient non‐radiative decay way contribution. It is believed that the strong π–π interactions and free rotation of −C(C≡N)2 promote this decay way transition. This work on the charge‐transfer complex doping system suggests the great potential in optical, photothermal imaging, and therapy applications as well as information memory and photo sensing.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献