Piezoelectric‐Effect Enhanced Perovskite Plasmonic Nanolasers

Author:

Li Meili1ORCID,Lu Junfeng2,Wan Peng2,Jiang Mingming2,Lin Feng3,Wu Xianxin4,Liu Xinfeng4,Pan Caofeng1ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100400 P. R. China

2. Department of Applied Physics College of Science Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China

3. Institute of Condensed Matter and Material Physics Peking University Beijing 100871 P. R. China

4. CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center of Excellence for Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China

Abstract

AbstractHerein, the piezoelectric effect of CsPbBr3 perovskite is utilized for the first time to enhance the nanolasers performance based on the flexible poly(ethylenenaphthalate) PEN/single‐crystal‐Au/MgF2/CsPbBr3 (ScAu/M/CPB) structure. The dynamic‐modulated plasmonic lasing mode blueshift is achieved by the piezoelectric polarization effect (PPE)‐induced effective refractive index (neff) change by varying the applied strain (ε). In particular, taking advantage of the increased cavity mode frequency, the lasing threshold (Pth) reduces from 4.5 µJ cm−2 (ε = 0) to 1.5 µJ cm−2 (ε = −1.02%). The ε‐dependent carrier dynamics results reveal the nature of ultralow Pth being PPE‐induced spontaneous emission (SE) decay rate enhancement, leading to the reduction in radiation loss of the plasmonic cavity. The corresponding enhancement mechanism is put forward to elucidate the principle of piezoelectric‐induced dynamic modulation nanolasers characteristic. This work demonstrates that coupling of piezoelectric effect and plasmonics is an effective route to enhance the performance of plasmonic nanolasers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3