Room‐Temperature Phosphorescence Hydrogel with Multiple Color Based on Salt‐Induced Aggregation

Author:

Yu Shunfeng1,Zhang Jie1,Chen Xiaoxiao1,Wu Xinjun1,Zhao Xin1,Zhu Zhengdao1,Zhang Jiawei2,Zuo Yongkang3,Zhao Chuanzhuang1ORCID

Affiliation:

1. School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China

2. School of Material Science and Engineering Tiangong University Tianjin 300387 China

3. School of Materials Science and Engineering Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering Changzhou University Changzhou 213164 China

Abstract

AbstractOrganic photoluminescent materials with room‐temperature phosphorescence (RTP) are of great interest, yet achieving RTP in hydrogels faces challenges due to water‐quenching effects. In this study, a straightforward method is presented to achieve RTP hydrogel using a self‐healing and salt‐hardening hydrogel. The hydrogel is synthesized by polymerizing acrylic acid (AA) with diethylenetriamine (DETA) as the dynamic crosslinker. The poly(acrylic acid)/DETA hydrogel could achieve an afterglow lasting 1.6 s after soaking with NaBr solution. The salt‐enhanced hydrophobic aggregation of the hydrogel network promotes the clustering of carboxyl groups and oxygen atoms, resulting in a rigid environment that suppresses nonradioactive transitions and leads to the manifestation of RTP. Additionally, the dynamic association of AA‐DETA allows the freeze‐dried hydrogel powder to be blended with various hydrophobic dyes, leading to a remodelable hydrogel with delayed emission of multiple colors. In general, by combining salt‐hardening property with self‐healing property together, a RTP hydrogel platform that can be facilely loaded with various organic dyes is proposed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3