Enhanced Thermoelectric Performance of MnTe by Decoupling of Electrical and Thermal Transports

Author:

Basit Abdul1ORCID,Xin Jiwu2,Luo Yubo3,Dai Ji‐Yan Y.1,Yang Junyou3

Affiliation:

1. Department of Applied Physics The Hong Kong Polytechnic University Kowloon 999077 Hong Kong

2. School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Ave Singapore 639798 Singapore

3. State Key Laboratory of Material Processing & Die Mold Technology Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractLead‐free polycrystalline manganese telluride holds great potential in the development of waste heat recovery due to its fascinating physical properties. However, the poor thermoelectric (TE) performance in the p‐type MnTe alloys always results from their inferior carrier concentration, leading to low power factor and high thermal conductivity which restrict the overall thermoelectric performance. In this work, the problem is solved by decoupling its electrical and thermal transports through the hole donor Ge‐deficiency in MnTe + x mol.% GeTe (0 ≤ ≤ 4) compounds. Intrinsically, extra GeTe in MnTe + x mol.% GeTe compound offers free charge carriers due to a narrow bandgap comparatively, realizing not only a full assessment of stimulated electrical performance but also an enhanced power factor. Moreover, benefiting from the nano‐precipitates and tweed microstructures, the lattice thermal conductivity effectively reduces due to the intensive phonon scattering accordingly. Ultimately, a maximum ZT of ≈1.2 at 873 K in the 3 mol.% GeTe doped MnTe sample is realized.

Funder

National Natural Science Foundation of China

Huazhong University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3