Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multi‐Gate Architecture

Author:

Zhang Jian1,Braun Oliver12,Barin Gabriela Borin3,Sangtarash Sara4,Overbeck Jan12,Darawish Rimah35,Stiefel Michael1,Furrer Roman1,Olziersky Antonis6,Müllen Klaus7,Shorubalko Ivan1,Daaoub Abdalghani H. S.4,Ruffieux Pascal3,Fasel Roman35,Sadeghi Hatef4,Perrin Mickael L.189ORCID,Calame Michel1210

Affiliation:

1. Transport at Nanoscale Interfaces Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland

2. Department of Physics University of Basel 4056 Basel Switzerland

3. nanotech@surfaces Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland

4. School of Engineering University of Warwick Coventry CV4 7AL United Kingdom

5. IBM Research ‐ Zurich 8803 Rüschlikon Switzerland

6. Max Planck Institute for Polymer Research 55128 Mainz Germany

7. Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern 3012 Bern Switzerland

8. Department of Information Technology and Electrical Engineering ETH Zurich 8092 Zurich Switzerland

9. Quantum Center ETH Zürich 8093 Zürich Switzerland

10. Swiss Nanoscience Institute University of Basel 4056 Basel Switzerland

Abstract

AbstractAtomically precise graphene nanoribbons (GNRs) are increasingly attracting interest due to their largely modifiable electronic properties, which can be tailored by controlling their width and edge structure during chemical synthesis. In recent years, the exploitation of GNR properties for electronic devices has focused on GNR integration into field‐effect‐transistor (FET) geometries. However, such FET devices have limited electrostatic tunability due to the presence of a single gate. Here, on the device integration of 9‐atom wide armchair graphene nanoribbons (9‐AGNRs) into a multi‐gate FET geometry, consisting of an ultra‐narrow finger gate and two side gates is reported. High‐resolution electron‐beam lithography (EBL) is used for defining finger gates as narrow as 12 nm and combine them with graphene electrodes for contacting the GNRs. Low‐temperature transport spectroscopy measurements reveal quantum dot (QD) behavior with rich Coulomb diamond patterns, suggesting that the GNRs form QDs that are connected both in series and in parallel. Moreover, it is shown that the additional gates enable differential tuning of the QDs in the nanojunction, providing the first step toward multi‐gate control of GNR‐based multi‐dot systems.

Funder

H2020 Marie Skłodowska-Curie Actions

H2020 European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Bundesamt für Berufsbildung und Technologie

UK Research and Innovation

Leverhulme Trust

Horizon 2020 Framework Programme

Werner Siemens-Stiftung

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3