Enhanced UV Light‐Emission of Zinc‐Phosphate‐Hydrate Hydrothermally‐Grown on Cu Metal Substrates for Opto‐Electronic Applications

Author:

Spiegelhoff Yuting1,Zemajtis Filip2,Kheirandish Elaheh1,Grauby Olivier3,Ferry Daniel3,Pellenq Roland J.‐M.4,Sobolev Konstantin25,Kouklin Nikolai12ORCID

Affiliation:

1. Departments of Electrical Engineering University of Wisconsin‐Milwaukee 3200 North Cramer St. Milwaukee WI 53211 USA

2. Materials Science and Engineering University of Wisconsin‐Milwaukee 3200 North Cramer St. Milwaukee WI 53211 USA

3. Aix Marseille Univ CNRS CINaM Marseille France

4. Epidapo Lab – CNRS / George Washington University Children's National Medical Center Children's Research Institute 111 Michigan Ave. NW Washington DC 20010 USA

5. Civil Engineering University of Wisconsin‐Milwaukee 3200 North Cramer St. Milwaukee WI 53211 USA

Abstract

AbstractIn the present study, polycrystalline films of layered zinc phosphate hydrate are produced by a facile, low‐temperature single‐step hydrothermal fabrication method on top of Cu metal substrates. Despite containing structural water, the as‐grown films remain crystalline, chemically stable, and electrically conductive. The photoluminescence spectrum obtained at room‐temperature reveals the presence of a spectrally narrow, high‐intensity ultraviolet band that consists of two Gaussian peaks at ≈377 and 383 nm and a UV‐to‐visible peak emission intensity ratio of ≈5.3. The electrical charge‐transport properties remain Ohmic for electric fields of up to ≈2 kV m−1 and temperature (T) range of ≈223–368 K. The electrical conductivity is further found to vary exponentially with the inverse temperature, and the thermal activation energy, Ea is 285 ± 8 meV. A moderate UV‐vis photoconduction effect is registered and assigned to light‐assisted electronic transitions that involve near‐band edge defect states. This study can potentially open a door to the engineering and deployment of water‐based compounds with advanced, semiconducting‐like attributes in short‐wavelength opto‐electronic devices.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3