Optimization of Projected Phase Change Memory for Analog In‐Memory Computing Inference

Author:

Li Ning12ORCID,Mackin Charles3,Chen An3,Brew Kevin1,Philip Timothy1,Simon Andrew1,Saraf Iqbal1,Han Jin‐Ping2,Sarwat Syed Ghazi4,Burr Geoffrey W.3,Rasch Malte2,Sebastian Abu4,Narayanan Vijay2,Saulnier Nicole1

Affiliation:

1. IBM Research Nanotechnology Center 257 Fuller Rd Albany NY 12203 USA

2. IBM T. J. Watson Research Center 1101 Kitchawan Road Yorktown Heights NY 10598 USA

3. IBM Almaden Research Center 650 Harry Rd San Jose CA 95120 USA

4. IBM Research‐Europe Süumerstrasse 4 Rüschlikon 8803 Switzerland

Abstract

AbstractPhase change memory (PCM) is one of the most promising candidates for non‐von Neumann based analog in‐memory computing–particularly for inference of previously‐trained deep neural networks (DNN). It is shown that PCM electrical properties can be tuned systematically using a projection liner, which is designed for resistance drift mitigation, in the manufacturable mushroom PCM. A systematic study of the electrical properties‐including resistance values, memory window, resistance drift, read noise, and their impact on the accuracy of large neural networks of various types and with tens of millions of weights is performed. It is sown that the DNN accuracy can be improved by the PCM with liner for both the short term and long term after programming, due to reduced resistance drift and read noise, respectively, despite the trade‐off of reduced memory window. The liner conductance, PCM device characteristics, and network inference accuracy with PCM memory window and reset state conductance is correlated, which allows us to identify the device optimization space to achieve better short term and long term accuracy for large neural networks.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Reference17 articles.

1. Fully On-Chip MAC at 14 nm Enabled by Accurate Row-Wise Programming of PCM-Based Weights and Parallel Vector-Transport in Duration-Format

2. R.Khaddam‐Aljameh M.Stanisavljevic J. F.Mas G.Karunaratne M.Braendli F.Liu A.Singh S. M.Müller U.Egger A.Petropoulos T.Antonakopoulos K.Brew S.Choi I.Ok F. L.Lie N.Saulnier V.Chan I.Ahsan V.Narayanan S. R.Nandakumar M.Le Gallo P. A.Francese A.Sebastian E.Eleftheriou 2021 Symposium on VLSI Circuits 2021 pp.1–2.

3. Neuromorphic computing with multi-memristive synapses

4. R. L.Bruce S.Ghazi Sarwat I.Boybat C.‐W.Cheng W.Kim S. R.Nandakumar C.Mackin T.Philip Z.Liu K.Brew N.Gong I.Ok P.Adusumilli K.Spoon S.Ambrogio B.Kersting T.Bohnstingl M.Le Gallo A.Simon N.Li I.Saraf J.‐P.Han L.Gignac J. M.Papalia T.Yamashita N.Saulnier G. W.Burr H.Tsai A.Sebastian V.Narayanan et al. 2021 IEEE International Reliability Physics Symposium (IRPS) 2021 pp.1–6.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Which Coupled is Best Coupled? An Exploration of AIMC Tile Interfaces and Load Balancing for CNNs;IEEE Transactions on Parallel and Distributed Systems;2024-10

2. Improving the Accuracy of Analog-Based In-Memory Computing Accelerators Post-Training;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

3. Impact of Phase-Change Memory Drift on Energy Efficiency and Accuracy of Analog Compute-in-Memory Deep Learning Inference (Invited);2023 IEEE International Reliability Physics Symposium (IRPS);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3