Affiliation:
1. Department of Electrical and Electronic Engineering Faculty of Engineering and Information Technology The University of Melbourne Parkville VIC 3010 Australia
2. School of Engineering RMIT University Melbourne VIC 3000 Australia
Abstract
AbstractSolution‐processed microelectronics offer advantages, including cost‐effectiveness, higher energy efficiency, and compatibility with rapid prototyping compared to their counterparts fabricated through traditional semiconductor manufacturing processes. Unfortunately, solution‐processed transistors exhibit wide performance variability and low yield. In this work, a solution‐processed transparent indium gallium zinc oxide (IGZO) thin film transistor with a low temperature‐annealed hafnium oxide dielectric layer is described. Post‐annealing temperatures for the sol–gel hafnium dioxide thin film are reduced to below 200 °C, significantly expanding the range of substrates on which the metal oxide dielectric can be deposited. The fabricated devices exhibit excellent characteristics with high field‐effect mobilities of over 85 cm2 V−1 s−1, along with low subthreshold swing below 140 mV dec−1, high on/off ratios, and near‐zero threshold voltages when operating stably at low‐operating voltages of 2 V. The solution processed transparent hafnium dioxide gate dielectric IGZO transistors are shown to exhibit comparatively significantly lower device variation and high yield, allowing for the reproducible fabrication of large‐area and transparent solution processed microelectronics systems.
Subject
Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献