Quantized Neural Network via Synaptic Segregation Based on Ternary Charge‐Trap Transistors

Author:

Baek Yongmin1,Bae Byungjoon1ORCID,Yang Jeongyong2,Lee Doeon1,Lee Hee Sung1,Park Minseong1,Kim Taegeon1,Kim Sihwan1,Park Bo‐In34,Yoo Geonwook25ORCID,Lee Kyusang16ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Virginia Charlottesville VA 22904 USA

2. School of Electronic Engineering Soongsil University 06938 Seoul South Korea

3. Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge MA 02139 USA

4. Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

5. Department of Intelligent Semiconductors Soongsil University Seoul 06938 South Korea

6. Department of Material Science and Engineering University of Virginia Charlottesville VA 22904 USA

Abstract

AbstractArtificial neural networks (ANNs) are widely used in numerous artificial intelligence‐based applications. However, the significant amount of data transferred between computing units and storage has limited the widespread deployment of ANN for the artificial intelligence of things (AIoT) and power‐constrained device applications. Therefore, among various ANN algorithms, quantized neural networks (QNNs) have garnered considerable attention because they require fewer computational resources with minimal energy consumption. Herein, an oxide‐based ternary charge‐trap transistor (CTT) that provides three discrete states and non‐volatile memory characteristics are introduced, which are desirable for QNN computing. By employing a differential pair of ternary CTTs, an artificial synaptic segregation with multilevel quantized values for QNNs is demostrated. The approach establishes a platform that combines the advantages of multiple states and robustness to noise for in‐memory computing to achieve reliable QNN performance in hardware, thereby facilitating the development of energy‐efficient AIoT.

Funder

National Science Foundation

National Research Foundation of Korea

Division of Electrical, Communications and Cyber Systems

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Reference40 articles.

1. D.Bahdanau K. H.Cho Y.Bengio 3rd Int. Conf. Learn. Represent. ICLR 2015 – Conf. Track Proc2015 1.

2. L.Hertel E.Barth T.Kaster T.Martinetz Proc. Int. Jt. Conf. Neural Networks2015 2015‐Sept. 20.

3. N.Mellempudi A.Kundu D.Mudigere D.Das B.Kaul P.Dubey arXiv preprint arXiv:1705.014622017.

4. H.Alemdar V.Leroy A.Prost‐Boucle F.Petrot Proc. Int. Jt. Conf. Neural Networks2017 May2547.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3