Negative Differential Resistance in Single‐Molecule Junctions Based on Heteroepitaxial Spherical Au/Pt Nanogap Electrodes

Author:

Yin Dongbao1,Furushima Miku2ORCID,Tsuchihata Eiji1,Izawa Seiichiro1ORCID,Ono Tomoya2ORCID,Shintani Ryo3ORCID,Majima Yutaka1ORCID

Affiliation:

1. Laboratory for Materials and Structures Institute of Innovative Research Tokyo Institute of Technology Yokohama Kanagawa 226‐8503 Japan

2. Department of Electrical and Electronic Engineering Graduate School of Engineering Kobe University Kobe Hyogo 657‐8501 Japan

3. Division of Chemistry Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560‐8531 Japan

Abstract

AbstractSingle‐molecule junctions exploit the internal structure of molecular orbitals to construct a new class of functional quantum devices. The demonstration of negative differential resistance (NDR) in single‐molecule junctions is direct evidence of quantum mechanical tunneling through a molecular orbital. Here, a pronounced NDR effect is reported with a peak‐to‐valley ratio of 30.1 on a single‐molecule junction of π‐conjugated quinoidal‐fused oligosilole derivatives, Si2 × 2, embedded between the unique electroless gold‐plated heteroepitaxial spherical Au/Pt nanogap electrodes. This NDR feature persists in a consecutive endurance test of 180 current traces. the thermally stable NDR effects in the Si2 × 2 single‐molecule junctions between 9 and 300 K are demonstrated. The density functional theory calculations under electric fields indicate that the NDR effect can be ascribed to the bias‐dependent resonant tunneling transport via the polarized HOMO, which has asymmetrically changed electrode coupling with increased bias voltages. The results confirm a promising electrical platform for constructing functional quantum devices at the single‐molecule level.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3