Affiliation:
1. National Laboratory of Solid‐State Microstructures School of Electronic Science and Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
2. Center for Nanochemistry Beijing Science and Engineering Center for Nanocarbons Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
Abstract
AbstractOrganic field‐effect transistors switched by insulated gates are the most essential building blocks, while usually plagued with degraded gate control arising from complicated dielectric engineering. Subsequently, the resulting large supply voltage and power consumption remain an essential issue for portable electronics driven by a single battery of only 1.5 V. Herein, wafer‐scale organic Schottky‐gate transistor arrays using inkjet‐printed few‐layer organic semiconducting crystals are reported. The transistors exhibit steep switching characteristics with an average subthreshold swing of 55 mV per dec and high signal amplification efficiency over 45 S A‐1, attributed to efficient Schottky gating and enhanced charge injection. Thereafter, high‐gain inverters are successfully demonstrated with an ultralow power consumption of only 800 pW; also, they are integrated as 1 V driven sequential logic circuits. A coplanar double‐gate geometry is also introduced for low‐voltage, single‐device AND logic. Therefore, the work opens new avenues toward the sustainable advancement in single‐battery‐driven, ultralow‐power organic electronics.
Funder
Natural Science Foundation of Jiangsu Province
National Key Research and Development Program of China
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献