Prediction and Elucidation of Physical Properties of Polycrystalline Materials Using Multichannel Machine Learning of Electron Backscattering Diffraction

Author:

Nozawa Koki1,Ishiyama Takamitsu1,Suemasu Takashi1,Toko Kaoru1ORCID

Affiliation:

1. Institute of Applied Physics University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8573 Japan

Abstract

AbstractThe application of machine learning in materials science has yielded several benefits, including the prediction of physical properties and the improvement of experimental efficiency. However, with complex models, such as convolutional neural networks (CNN), learning has become a black box, from which no universal physical knowledge can be obtained. In this study, a highly accurate prediction of the electrical properties of polycrystalline semiconductor thin films is achieved by learning multichannel CNN models from electron backscattering diffraction (EBSD) data, that is band contrasts, grain boundaries, and inverse pole figures. In addition, it examines how the CNN model learned the correlation between the crystallinity, grain boundaries, crystallographic orientation, and carrier mobility by polarizing certain EBSD data and checking the predicted changes in carrier mobility. Physical parameters affecting carrier mobility can be extracted, which is challenging via human image recognition. The methods proposed in this study will not only enable the prediction of electrical properties from EBSD data for all materials but also will contribute to the discovery of complex physical phenomena beyond the limits of human analysis.

Funder

Japan Association for Chemical Innovation

TEPCO Memorial Foundation

Japan Science and Technology Corporation

New Energy and Industrial Technology Development Organization

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3