Social context‐aware macroscopic routing scheme for opportunistic network

Author:

B R Sreenivasa1ORCID,Lahza Husam2,G Nandini3,Shawly Tawfeeq4,Alsheikhy Ahmed A.5,K R Naveen Kumar6,M Hassan Fareed Lahza7

Affiliation:

1. Department of Information Science & Engineering Bapuji Institute of Engineering & Technology Davanagere India

2. Department of Information Technology, Faculty of Computing and Information Technology King Abdulaziz University Jeddah Saudi Arabia

3. Department of Information Science & Engineering, BNMIT Bangalore India

4. Department of Electrical Engineering, Faculty of Engineering at Rabigh King Abdulaziz University Jeddah Saudi Arabia

5. Department of Electrical Engineering, College of Engineering Northern Border University Arar Saudi Arabia

6. Department of Computer Science & Engineering Bapuji Institute of Engineering & Technology Davangere India

7. Department of Information Systems College of Computers and Information Systems, Umm Al‐Qura University Makkah Saudi Arabia

Abstract

AbstractOpportunistic networks (OppNets) have attracted widespread attention as wireless technologies have advanced. OppNets are widely used in delay‐tolerant applications because they route messages using a store‐carry‐forward mechanism. Recently, socially aware routing has been increasingly modeled for message dissemination in OppNets, where the message is routed selectively through cooperative nodes based on user interests; however, routing becomes extremely difficult as node density and data size increase. However, the current method fails to reduce data redundancy, message overhead, delay, and improve performance efficiency. To address the issues, this article proposes social context‐aware microscopic routing (SCAMR) for OppNets. SCAMR uses cluster‐based communication, novel social‐context association mapping, and an improved lost packet retrieval mechanism with minimal messaging overhead. In this work, the experiment was performed by considering three scenarios: varying node size, varying buffer size, and varying time‐to‐live size. The experimental results show that the SCAMR scheme improves delivery ratio by 71.25%, 67.87%, 69.18%, reduces delay by 33.93%, 26.68%, 35.36%, reduces the number of hop nodes (i.e., messaging overhead) by 77.84%, 71.53%, 76.04% over existing approaches namely, SCARF (SoCial‐Aware Reliable Forwarding Technique for Vehicular Communications), SRS (secure routing strategy), and EDT (effective data transmission) considering different scenarios, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3