Thermodynamic properties calculations of Cu‐based species

Author:

Yousuf Muhammad12ORCID,Arshad Muhammad Fahad12,Tian Zhen‐Yu123ORCID

Affiliation:

1. Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. State Key Laboratory of Coal Conversion Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing China

Abstract

AbstractThis work focuses on the thermodynamic property calculations of seven copper‐based species, namely copper, copper oxide, copper hydroxide, copper nitrate, and copper hydroxide nitrate. The structures of these species were optimized to achieve stable geometries. The density functional theory (DFT) calculations were employed to obtain various thermodynamic properties such as entropy, enthalpy, Gibbs free energy, and heat capacity at constant pressure. A comparative investigation was performed on the temperature‐dependent behavior of key thermodynamic parameters. Species characterized by a higher quantity of atoms tend to demonstrate elevated thermodynamic properties. Copper and copper hydroxide nitrate had higher thermodynamic values than their oxides and other counterparts. It should be noted that the thermodynamic properties of copper hydroxide nitrate were newly computed, and the results showed that the thermodynamic values of the compound structure were higher than their crystalline counterparts. Moreover, due to the large structure size and solid phase, these thermodynamic values exhibited discrepancies with previously calculated computational and experimental values. The thermodynamic property values that depended on temperature were transformed into NASA 7‐Coefficient polynomials parameterization. The newly determined thermodynamic data and polynomials provide valuable insights into the thermodynamic behavior of copper‐based species. It will help better understand their surface sites and different crystalline structures. Such data can be used to better understand a variety of industrial processes, including combustion, gasification, chemical synthesis, and further to enhance efficiency, reduce costs, and minimize hazardous environmental emissions.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3