A sharp immersed method for electrohydrodynamic flows accompanied by charge evaporation

Author:

Chen Chong1,Lu Chang1,Xia Guangqing12ORCID,Chen Maolin3,Sun Bin1

Affiliation:

1. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment Dalian University of Technology Dalian China

2. Collaborative Innovation Center of Micro & Nano Satellites of Hebei Province North China Institute of Aerospace Engineering Langfang China

3. Combustion, Internal Flow and Thermal‐Structure Laboratory Northwestern Polytechnical University Xi'an China

Abstract

AbstractThis article presents a sharp immersed method for simulating electrohydrodynamic (EHD) flows that involve charge evaporation. This well‐known multi‐scale, multi‐physics problem is widely used in various fields, including industry and medicine. The method adopts a fully sharp model, where surface tension and Maxwell stress are treated as surface forces and free charges are concentrated on the zero thickness liquid‐vacuum interface. Incorporating charge evaporation imposes strict restrictions on the time‐step, as the rate of evaporation sharply increases with surface evolution. To overcome this challenge, an iterative algorithm that couples the electric field and surface charge density is proposed to obtain accurate results, even with significantly large time‐steps. To mitigate the numerical residuals near the interface, which may introduce parasitic flows and cause numerical instability, an immersed interface method‐based iterative projection method for the Navier–Stokes equations is proposed, in which a traction boundary condition involving multiple surface forces is imposed on the sharp interface. Numerical experiments were carried out, and the results show that the method is splitting‐error‐free and stable. The sharp immersed method is applied to simulate the electric‐induced deformation of an ionic liquid drop with charge evaporation. The results indicate that charge evaporation can suppress the sharp development of Taylor cones at the ends of the drops. These findings have significant implications for the design and optimization of EHD systems in various applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3