Affiliation:
1. Aquaculture Research Institute University of Idaho, Hagerman Fish Culture Experiment Station Hagerman Idaho USA
2. U.S. Fish and Wildlife Service Bozeman Fish Technology Center Bozeman Montana USA
3. Idaho State University Pocatello Idaho USA
Abstract
AbstractObjectiveArctic Grayling Thymallus arcticus are Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8°C to 18°C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses.MethodsOver a 144‐day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8°C to 26°C to measure the effects on growth, survival, gene expression, and antioxidant enzyme activity.ResultFish growth increased with increasing water temperature up to 18°C, beyond which survival was reduced. Fish did not survive at temperatures above 22°C. In response to temperatures above 16°C, 3.0‐fold and 1.5‐fold increases in gene expression were observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the gene expression ratio of heat shock protein 70 to heat shock protein 90. Activities of the SOD and GPx enzymes also rose at temperatures above 16°C, indicating heightened oxidative stress. Catalase gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase in thiobarbituric acid reactive substances was also recorded, which corresponded with rising temperatures.ConclusionOur findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise the survival of Arctic Grayling in the Big Hole River.
Funder
National Institutes of Health
National Science Foundation
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献