Local and global gas–liquid mass transfer in a micro‐packed bed reactor utilizing a noninvasive colorimetric technique

Author:

Liu Wei1,Xie Bingqi1,Luo Jing1,Zhang Chenghao1,Zhang Jisong1ORCID

Affiliation:

1. State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China

Abstract

AbstractMicro‐packed bed reactor (μPBR) presents great potential in the field of multiphase reactions due to the features of safety and high efficiency. However, the deeper cognition of mass transfer needs to be taken into consideration that is the foundation of reactor design. In this work, local and global gas–liquid mass transfer in the μPBR were studied utilizing a noninvasive colorimetric technique. In reactor level, the qualitative and quantitative comparisons were conducted; in particle level, liquid flow and mass transfer textures were assessed for the first time. The diversities of local mass transfer characteristics from temporal and spatial dimensions were obtained, and the heterogeneity of local and global mass transfer was revealed. The predicted correlations of in μPBR with churn flow and pseudo‐static flow were established with deviations generally within ±18%. This study contributes to improve the understanding of mass transfer and points out the process intensification direction of μPBR.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3