Affiliation:
1. Facultad de Química, Departamento de Bioquímica Universidad Nacional Autónoma de México Mexico
Abstract
Cyclin/cyclin‐dependent kinase (CDK) heterodimers have multiple phosphorylation targets and may alter the activity of these targets. Proteins from different metabolic processes are among the phosphorylation targets, that is, enzymes of central carbon metabolism. This work explores the interaction of Cyc/CDK complex members with the glycolytic enzymes hexokinase 7 (HXK7) and glyceraldehyde‐3‐phosphate dehydrogenase (GAP). Both enzymes interacted steadily with CycD2;2, CycB2;1 and CDKA;1 but not with CDKB1;1. However, Cyc/CDKB1;1 complexes phosphorylated both enzymes, decreasing their activities. Treatment with a CDK‐specific inhibitor (RO‐3306) or with lambda phosphatase after kinase assay restored total HXK7 activity, but not GAP activity. In enzymatic assays, increasing concentrations of CDKB1;1, but not of CycD2;2, CycB2;1 or CycD2;2/CDKB1;1 complex, decreased GAP activity. Cell cycle regulators may modulate carbon channeling in glycolysis by two different mechanisms: Cyc/CDK‐mediated phosphorylation of targets (e.g., HXK7; canonical mechanism) or by direct and transient interaction of the metabolic enzyme (e.g., GAP) with CDKB1;1 without a Cyc partner (alternative mechanism).
Funder
Consejo Nacional de Ciencia y Tecnología
Subject
Cell Biology,Genetics,Molecular Biology,Biochemistry,Structural Biology,Biophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献