Affiliation:
1. Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xian Shaanxi China
2. Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province Chengdu Sichuan China
3. College of Chemistry and Chemical Engineering Xi'an Shiyou University Xian Shaanxi China
Abstract
AbstractBased on the requirements of deep sealing and profile control for the excellent temperature and salt resistance on polyacrylamide microspheres, the Poly‐AM/AMPS was prepared depends on aqueous solution polymerization method to improving oil and gas recovery efficiency in low‐permeability and heterogeneous reservoirs resulted by water channeling. The key technical parameters were established through single‐factor experimental methods, and the chemical structure was studied by infrared spectrum analysis (FTIR), energy spectrum analysis, and x‐ray diffraction analysis, and then the thermal stability was investigated depends on the thermogravimetric (TG) and differential thermogravimetric (DTG) distribution curves, moreover, the particle size and distribution, microstructure, and surface morphology were further studied. As a result, the results confirmed that the molecular structure of Poly‐AM/AMPS meets the expected design, and the quality retention rate at 800°C is 17.4%, the median particle size of Poly‐AM/AMPS particles is 35.88 μm, and the particle size distribution range is about 1.94–497.8 μm. Further, the Poly‐AM/AMPS was modified by maleic anhydride, sodium styrenesulfonate, and dimethyl diallyl ammonium chloride through conventional functional strengthening and modification, modified by nano‐SiO2, GO, and S‐CaCO3 through nano‐functional strengthening and modification. Additionally, the functional strengthening and modification mechanism was studied depends on the FTIR, TG, and DTG methods.
Funder
Education Department of Shaanxi Province