2D MXenes Embedded Perovskite Hydrogels for Efficient and Stable Solar Evaporation

Author:

Arshad Naila12,Irshad Muhammad Sultan13,Asghar M. Sohail3,Alomar Muneerah4,Tao Junyang3,Shah M. A. K. Yousaf5,Wang Xianbao3,Guo Jinming3,Wageh S.6,Al‐Hartomy Omar A.7,Kalam Abul6,Hao Yabin1ORCID,Ouyang Zhengbiao1ORCID,Zhang Han12ORCID

Affiliation:

1. Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China

2. Interdisciplinary Center of High Magnetic Field Physics College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China

3. School of Materials Science and Engineering Hubei University Wuhan 430062 P. R. China

4. Department of Physics College of Sciences Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia

5. School of Energy and Environment Southeast University No. 2 Si Pai Lou Nanjing 210096 China

6. Department of Physics Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia

7. Research Center for Advanced Materials Science (RCAMS) King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia

Abstract

AbstractSolar evaporation is a facile and promising technology to efficiently utilize renewable energy for freshwater production and seawater desalination. Here, the fabrication of self‐regenerating hydrogel composed of 2D‐MXenes nanosheets embedded in perovskite La 0.6Sr 0.4Co 0.2Fe 0.8O3−δ (LSCF)/polyvinyl alcohol hydrogels for efficient solar‐driven evaporation and seawater desalination is reported. The mixed dimensional LSCF/Ti3C2 composite features a localized surface plasmonic resonance effect in the polymeric network of polyvinyl alcohol endows excellent evaporation rates (1.98 kg m−2 h−1) under 1 k Wm−2 or one sun solar irradiation ascribed by hydrophilicity and broadband solar absorption (96%). Furthermore, the long‐term performance reveals smooth mass change (13.33 kg m−2) during 8 h under one sun. The composite hydrogel prompts the dilution of concentrated brines and redissolves it back to water (1.2 g NaCl/270 min) without impeding the evaporation rate without any salt‐accumulation. The present research offers a substantial opportunity for solar‐driven evaporation without any salt accumulation in real‐life applications.

Funder

King Khalid University

National Natural Science Foundation of China

Department of Education of Guangdong Province

State Key Laboratory of Luminescence and Applications

Publisher

Wiley

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3