Groundwater recharge in northern New England: Meteorological drivers and relations with low streamflow

Author:

Crossett Caitlin C.1ORCID,Hodgkins Glenn A.2,Menk Hadley3,Dupigny‐Giroux Lesley‐Ann L.4,Dudley Robert5,Lemcke‐Stampone Mary6,Hammond John7

Affiliation:

1. Department of Geoscience Hobart and William Smith Colleges Geneva New York USA

2. U.S. Geological Survey New England Water Science Center Augusta Maine USA

3. Department of Geography & Sustainable Development University of St Andrews St Andrews Scotland UK

4. Department of Geography & Geosciences University of Vermont Burlington Vermont USA

5. U.S. Geological Survey New England Water Science Center Pembroke New Hampshire USA

6. Department of Geography University of New Hampshire Durham New Hampshire USA

7. U.S. Geological Survey MD‐DE‐DC Water Science Center Catonsville Maryland USA

Abstract

AbstractMeteorological drivers of groundwater recharge for spring (February–June), fall (October–January), and recharge‐year (October–June) recharge seasons were evaluated for northern New England and upstate New York from 1989 to 2018. Monthly groundwater recharge was computed at 21 observation wells by subtracting the water levels at the end of each month from the level of the previous month; only positive monthly values were used to compute seasonal recharge. Precipitation, temperature, sea‐level pressure, 500‐mb geopotential heights, and various teleconnection indices were tested as explanatory variables for the interannual variability of recharge using random forest machine learning models. Precipitation within recharge seasons was positively correlated with groundwater recharge for most wells in all seasons. In general, whilst groundwater recharge in the study area was generally highest during the months of March and April, October precipitation was an important month for explaining the interannual groundwater recharge variability. This is likely because the variability in recharge in October may be high or low for given years. Sea‐level pressure and 500‐mb heights were typically inversely correlated with groundwater recharge during the recharge‐year and fall recharge seasons, as higher sea‐level pressure and heights are usually associated with clearer skies and less precipitation. The North Atlantic Oscillation, Pacific‐North American pattern, and Pacific Decadal Oscillation teleconnections affected groundwater recharge differently by well and season. The influence of groundwater recharge on minimum daily streamflows during the subsequent summer/fall was also analysed. Summer precipitation was the most important explanatory variable for study streams whilst groundwater recharge and summer air temperature were significant variables for a few streams.

Funder

National Science Foundation

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3