Agarose‐based hydrogels with tunable, charge‐selective permeability properties

Author:

Zhao Jing123ORCID,Marczynski Matthias12ORCID,Henkel Manuel12ORCID,Lieleg Oliver12ORCID

Affiliation:

1. TUM School of Engineering and Design, Department of Materials Engineering Technical University of Munich Garching Germany

2. Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering Technical University of Munich Garching Germany

3. School of Pharmacy Shenyang Pharmaceutical University Shenyang China

Abstract

AbstractPhysiologically, a hallmark of biological hydrogels is their ability to selectively trap diffusing molecules and particles. And indeed, there is now increasing interest in using selective hydrogel barriers for applications in biomedicine and medical engineering. However, when employing synthetic polymers to create hydrogels with selective permeabilities, controlling the type and strength of the ensuing filtration process is difficult. Here, we generate hybrid gels with adjustable selectivity profiles by mixing a series of (bio‐)macromolecules with agarose. Depending on the type and concentration of the incorporated macromolecules, those hybrid gels achieve a selective retardation of the diffusive translocation of either positively or negatively charged dextrans at both, acidic and neutral pH. Furthermore, we demonstrate three strategies that provide hydrogels with sequestered patches of both, cationic and anionic binding sites, thus creating symmetric charge (i.e., electrostatic bandpass) filters which still allow neutral molecules to pass. Moreover, such agarose matrices offer a high level of versatility as their permeability profiles can be tailored at will by integrating macromolecules with desired physico‐chemical properties. Thus, those agarose‐based hybrid gels may serve as a powerful platform to engineer adjustable and versatile materials for a broad range of future applications in the field of biomedical engineering.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3