Single‐cell RNA sequencing of retina revealed novel transcriptional landscape in high myopia and underlying cell‐type‐specific mechanisms

Author:

Yao Yunqian123,Chen Zhenhua45,Wu Qingfeng45678,Lu Yi12910,Zhou Xingtao123,Zhu Xiangjia12910

Affiliation:

1. Eye Institute and Department of Ophthalmology Eye & ENT Hospital Fudan University Shanghai China

2. Key Laboratory of Myopia Chinese Academy of Medical Sciences National Health Center Key Laboratory of Myopia (Fudan University) Shanghai China

3. Shanghai Research Center of Ophthalmology and Optometry Shanghai China

4. State Key Laboratory of Molecular Development Biology Chinese Academy of Sciences Institute of Genetics and Developmental Biology Beijing China

5. University of Chinese Academy of Sciences Beijing China

6. Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Beijing China

7. Chinese Institute for Brain Research Beijing China

8. Beijing Children's Hospital Capital Medical University Beijing China

9. Shanghai Key Laboratory of Visual Impairment and Restoration Shanghai China

10. State Key Laboratory of Medical Neurobiology Fudan University Shanghai China

Abstract

AbstractHigh myopia is a leading cause of blindness worldwide with increasing prevalence. Retina percepts visual information and triggers myopia development, but the underlying etiology is not fully understood because of cellular heterogeneity. In this study, single‐cell RNA sequencing analysis was performed on retinas of mouse highly myopic and control eyes to dissect the involvement of each cell type during high myopia progression. For highly myopic photoreceptors, Hk2 inhibition underlying metabolic remodeling from aerobic glycolysis toward oxidative phosphorylation and excessive oxidative stress was identified. Importantly, a novel Apoe+ rod subpopulation was specifically identified in highly myopic retina. In retinal neurons of highly myopic eyes, neurodegeneration was generally discovered, and the imbalanced ON/OFF signaling driven by cone‐bipolar cells and the downregulated dopamine receptors in amacrine cells were among the most predominant findings, indicating the aberrant light processing in highly myopic eyes. Besides, microglia exhibited elevated expression of cytokines and TGF‐β receptors, suggesting enhanced responses to inflammation and the growth‐promoting states involved in high myopia progression. Furthermore, cell–cell communication network revealed attenuated neuronal interactions and increased glial/vascular interactions in highly myopic retinas. In conclusion, this study outlines the transcriptional landscape of highly myopic retina, providing novel insights into high myopia development and prevention.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3