Increasing driver flexibility through personalized menus and incentives in ridesharing and crowdsourced delivery platforms

Author:

Horner Hannah1ORCID,Pazour Jennifer1ORCID,Mitchell John E.1ORCID

Affiliation:

1. Rensselaer Polytechnic Institute Troy New York USA

Abstract

AbstractThis article formulates and solves a stochastic optimization model to investigate the impact of crowdsourced platforms (e.g., ridesharing, on‐demand delivery, volunteer food rescue, and carpooling) offering small, personalized menus of requests and incentive offers for drivers to choose from. To circumvent nonlinear variable relationships, we exploit model structure to formulate the program as a stochastic linear integer program. The proposed solution approach models stochastic responses as a sample of variable and fixed scenarios, and to counterbalance solution overfitting, uses a participation ratio parameter. The problem is also decomposed and iterated among two separate subproblems, one which optimizes menus, and another, which optimizes incentives. Computational experiments, based on a ride sharing application using occasional drivers demonstrate the importance of using multiple scenarios to capture stochastic driver behavior. Our method provides robust performance even when discrepancies between predicted and observed driver behaviors exist. Computational results show that offering menus and personalized incentives can significantly increase match rates and platform profit compared to recommending a single request to each driver. Further, compared to the menu‐only model, the average driver income is increased, and more customer requests are matched. By strategically using personalized incentives to prioritize promising matches and to increase drivers' willingness to accept requests, our approach benefits both drivers and customers. Higher incentives are offered when drivers are more likely to accept, while fewer incentives and menu slots are reserved for driver‐request pairs less likely to be accepted.

Funder

National Science Foundation

Johnson and Johnson

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3