Affiliation:
1. Jinneng Holding Shanxi Science and Technology Research Institute Co. Ltd (Jincheng) Technology Centre Jincheng China
2. College of Safety Science and Engineering (Henan Polytechnic University) Jiaozuo China
3. State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University) Jiaozuo China
Abstract
AbstractRock burst disasters can be reduced and prevented with the help of coal dust water injection. In this study, the high‐pressure water injection device is used to examine how the water absorption rate changes over time under various water injection pressures. The results reveal that the water absorption rate of coal samples increases quickly initially before slowing down with water absorption time. Its change can be described using the Langmuir equation. In addition, the Langmuir equation is utilized to demonstrate how water injection pressure affects the maximum water absorption of coal samples. The effects of experimental findings and numerical analysis are investigated on water injection pressure. The breadth and extent of coal bodies with increased moisture are continuously expanding at the same water injection pressure and water injection time. The water absorption of coal close to the borehole remains relatively unchanged with an increase in water injection pressure, but the water absorption range of coal in the vicinity increases. Therefore, raising the water injection pressure and duration will improve the effective range of water injection. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.
Funder
National Natural Science Foundation of China
Subject
Environmental Chemistry,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献