Comparison of machine learning techniques for precision in measurement of glucose level in artificial pancreas

Author:

Yadav Vijay K.1,Nilam 1ORCID

Affiliation:

1. Department of Applied Mathematics Delhi Technological University Delhi India

Abstract

Precision in the measurement of glucose levels in the artificial pancreas is a challenging task and a mandatory requirement for the proper functioning of an artificial pancreas. A suitable machine learning (ML) technique for the measurement of glucose levels in an artificial pancreas may play a crucial role in the management of diabetes. Therefore in the present work, a comparison has been made among a few ML techniques for the measurement of glucose levels in the artificial pancreas because ML is an astounding technology of artificial intelligence and widely applicable in various fields such as medical science, robotics, and environmental science. The models, namely, decision tree (DT), random forest (RF), support vector machine (SVM), and K‐nearest neighbor (KNN), based on supervised learning, are proposed for the dataset of Pima Indian to predict and classify diabetes mellitus. Ensuring the predictions and accuracy up to the level of diabetes mellitus type 2 (DMT2), the comparative behavior of all four models has been discussed. The ML models developed here stratify and predict whether an individual is diabetic or not based on the features available in the dataset. The dataset passes through pre‐processing, and ML algorithms are fitted to train the dataset, and then the performance of the test results is discussed. An error matrix (EM) has been generated to measure the accuracy score of the models. The accuracies in the prediction and classification of DMT2 models are 71%, 77%, 78%, and 80% for DT, SVM, RF, and KNN algorithms, respectively. The KNN model has shown a more precise result in comparison to other models. The proposed methods have shown astounding behavior in terms of accuracy in the prediction of diabetes mellitus as compared to previously developed methods.

Publisher

Wiley

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3