Pig manure degradation and carbon emission: Measuring and modeling combined aerobic–anaerobic transformations

Author:

Dalby Frederik R.1ORCID,Hafner Sasha D.1,Ambrose Herald W.1,Adamsen Anders Peter S.1

Affiliation:

1. Department of Biological and Chemical Engineering Aarhus University Aarhus Denmark

Abstract

AbstractGreenhouse gas emissions from liquid livestock manure storage significantly contribute to global warming. Accurate farm‐scale models are essential for predicting these emissions and evaluating manure management strategies, but they rely on multiple parameters describing carbon loss dynamics. Surface respiration may significantly influence carbon loss and methane emission, yet it is not explicitly included in current models. We conducted experiments to measure pig manure surface respiration rate and its effect on organic matter degradation and methane and carbon dioxide emissions. Manure was incubated for 283 days at 10°C or 20°C under aerobic or anaerobic conditions, while measuring methane and carbon dioxide emission. This was followed by anaerobic digestion at 38°C. Surface respiration reduced the organic matter content, and the effect was temperature dependent. Methane emission was not affected by surface respiration, suggesting that substrate availability was not rate‐limiting for methanogenesis. Surface respiration rates were 18.1 ± 3.5 g CO2 m−2 day−1 at 10°C and 37.1 ± 13.1 g CO2 m−2 day−1 at 20°C (mean ± standard deviation) and were consistent with microsensor measurements of oxygen consumption in different manure surfaces. Based on these results, temperature‐ and surface area‐dependent respiration was incorporated in the existing anaerobic biodegradation model (ABM). Simulations showed that surface respiration accounts for 29% of carbon losses in a typical pig house and 8% for outdoor storage. Developing and refining algorithms for diverse carbon transformations, such as surface respiration, is crucial for evaluating the potential for methane emission and identification of variables that control emissions at the farm scale.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3