Numerical Investigation of Different Combustion Models for Dual‐Fuel Engine Combustion Processes

Author:

Liu Xicai1,Wu Wenfeng2,Wang Fubo3,Wang Zhengquan3,Guo Jia3,Yu Hongliang1ORCID

Affiliation:

1. Yantai University School of Ocean Qingquan Road, Laishan District 264005 Yantai China

2. Zhejiang Ocean University Haida South Road, Lincheng Changzhi Island 316022 Zhoushan China

3. CIMC Raffles Offshore Co., Ltd. Zhifu Island Street, Zhifu District 264012 Yantai China

Abstract

AbstractThe combustion process of a dual‐fuel engine was calculated by characteristic timescale model (CTM), eddy breakup model (EBM), and coherent flamelet model (CFM) to verify the accuracy of the combustion models. The results show that the peak pressure calculated by EBM is 2.78 % higher than the experimental value, and the peak pressure calculated by CFM is closest to the experimental value. The EBM is the most accurate for CO2 emissions. The deviation of CO emissions from the experimental values calculated by CTM is the smallest (< 1 %). The NOx emission calculated by CTM is good agreement with the experimental value at low speed, and EBM is in best agreement with the experimental value at high speed. The hydrocarbon emission calculated by CFM is the most accurate, with a deviation of less than 0.6 %.

Funder

Natural Science Foundation of Shandong Province

Bureau of Science and Technology of Zhoushan

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3