Evaluation of H2 Plasma‐Induced Damage in Materials for EUV Lithography

Author:

Choe Eun‐Seok12,Choi Seungwook3,Kim Ansoon3,Kim Kwan‐Yong1,Yeom Hee‐Jung1,Yoon Min Young1,Hong Seongwan1,Kim Dong‐Wook2,Kim Jung‐Hyung1ORCID,Lee Hyo‐Chang4ORCID

Affiliation:

1. Semiconductor Integrated Metrology Team Korea Research Institute of Standards and Science (KRISS) Daejeon 34113 Republic of Korea

2. Department of Radio and Information Comm. Eng. Chungnam National University Daejeon 34134 Republic of Korea

3. Department of Nano Science University of Science and Technology (UST) Daejeon 34113 Republic of Korea

4. Department of Semiconductor Science, Engineering and Technology Korea Aerospace University Goyang 10540 Republic of Korea

Abstract

AbstractUltrafine semiconductor fabrication by lithography has undergone a significant transition from deep ultraviolet (DUV) to extreme ultraviolet (EUV) processes, which presents new challenges. Specifically, the damage caused to components utilized in an EUV system, such as multilayer mirrors, reticles, and pellicles within lithography equipment, owing to EUV‐induced H2 plasma, is a critical issue that directly affects the process yield and equipment lifespan. To address these issues, it is crucial to establish an environment similar to that of EUV‐induced plasma and develop a method to evaluate the resulting damage. Accordingly, an evaluation method is developed for assessing the material damage caused by hydrogen radicals and ions in inductively coupled H2 plasma. In these systems, the electron density ranged from 5 × 108 to 3.5 × 1010 cm−3, the electron temperature ranged from 1 to 4 eV, and the ion energy ranged from several to tens of eV; these conditions closely align with the environment of an EUV‐induced H2 plasma. The damage to Mo2C, a potential EUV pellicle material, is quantitatively analyzed by measuring the fraction of the pore area and examining the chemical characteristics after exposing the samples to various plasma conditions, including electron density, gas pressure, and exposure time.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3