Recognition of Spatial Finiteness in Meniscus Splitting Based on Evaporative Interface Fluctuations

Author:

Wu Leijie1,Saito Isamu1,Hongo Kenta12,Okeyoshi Kosuke1ORCID

Affiliation:

1. Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1‐1 Asahidai Nomi Ishikawa 923–1292 Japan

2. Research Center for Advanced Computing Infrastructure Japan Advanced Institute of Science and Technology 1‐1 Asahidai Nomi Ishikawa 923–1292 Japan

Abstract

AbstractThe geometric deformation of viscous fingering is useful for understanding natural multiscale patterns and designing dissipative structures in materials. Although the spatio‐temporal patterns in soft materials are reported previously, there is a lack of research on the spatial finiteness and boundary effects. In this study, the recognition of spatial finiteness in “meniscus splitting phenomena” in aqueous polymer dispersions during water evaporation is demonstrated. By providing heat energy to polymer dispersions in a Hele‐Shaw cell, an interface fluctuation with concentration unevenness is induced to split the evaporative interface. The spatial finiteness of the interface causes asynchronous nucleation, which is demonstrated using polysaccharide dispersions. The results of the quasi‐natural experiments revealed that the nonequilibrium drying/wetting period for repositioning polymer clusters allows for considerable changes in Reynolds number in a low range (<10−6) to form multiple nuclei. This splitting method will be universally useful in various fields, including fluid dynamics, biology, and microfluidics, as well as non‐equilibrium, colloid, interface, polymer, and materials sciences.

Funder

Asahi Glass Foundation

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3